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NOTE

Roundoff Error in Computing Derivatives Using the Chebyshev
Differentiation Matrix*

1. INTRODUCTION

Differentiation of a function f using the Chebyshev pseudo- -

spectral method is a linear operator, so that differentiation can
be reduced to multiplication by a matrix . When the colloca-
tion points are the commonly used Gauss—Tobatto points, an
explicit formula for £ can be obtained [4]. A procedure to derive
the matrix for more general cotlocation points is presented in
|5}

IH-conditioning of 1 and of matrices related to D which
account for the boundary conditions, has been identified as a
potential problem for the implementation of Chebyshev pseudo-
spectral methods for the solution of partial differential equations
[1-3, 6, 7]. If there are N + 1 collocation points and boundary
conditions are not incorporated into D, then it can easily be seen
that the only eigenvalue of D is 0, with algebraic multiplicity
N 4 L. The null eigenvector corresponds to differentiation of the
constant function. When ¥ is modified 1o account for boundary
conditions, the modificd matrix possesses cigenvalues which
are O(N?) |2}, which accounts for the severe timeslep restriction
in using Chebyshev pscudo-spectral methods.

Aspects of the ill-conditioning of I were studied in {6, 7].
In [6] it was shown that there could be severe numerical diffi-
culties in computing the large (in absolute value) eigenvalues
and corresponding eigenvectors of the modified matrix. This
led to the conclusion that stability bounds can be dependent on
machine precision. However, this conclusion was not directly
related to the accuracy of the approximation. In [7] the spectrum
ol amatrix corresponding to a second-order differential operator
with Dirichlet boundary conditions was analyzed. 10 was shown
that a fraction ((7 — 2)/7) of the cigenvalues did not approxi-
male the exact cigenvalues, and that these large eigenvalues
were ({N7), leading to poorly conditioned matrices. These con-
clusions were not directly related to the accuracy of approximat-
ing the derivatives for any particular function.

The relationship between ill-conditioning of D and the accu-
racy of derivative calculations was studied in [1. 3]. In practice
Chebyshey psendo-spectral differentiation can be implemented
either by matrix operations (i.e., multiplication by a matrix) or
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by transform techniques, together with a recursion. In {1, 3] it
was shown that the transform-recursion techniques were gener-
ally less susceptible to roundoff error than implementations
employing matrix operations. In [1] roundoff error associated
with the matrix [ was attributed to inaccurate computation of
certain malrix clements, particularly certain large elements in
the upper left and lower right corners of the matrix. A technique
to reduce the influence of these large elements by modifying
the vector on which ) operates was proposed. In |3] other
implementations of the matrix multiply algorithm were consid-
ered. It was shown that the susceptibility to roundoff error
could be reduced by reformulating the elements of D employing
trigonometric identities. This was combined with a flipping
technique whereby symmetries of certain matrix elements were
exploited to avoid calculating half of the reformulated matrix
(the bottom half in the ordering in {3]). The resulting reformu-
lated matrix combined with the {lipping technique, was shown
to yield comparable accuracy to that oblained by transform
techniques in computing pseudo-speciral derivatives.

In this note we identify one cause of roundoff error in using
the Chebyshev differentiation matrix as the failuce of the com-
puted matrix to exactly preserve the constant null vector of
the differentiation matrix, or equivalently, the row sum of the
elements of D. We show that a simple procedure to compute
the diagonal elements of the matrix, so that the constant null
vector is preserved, allows for a dramatic reduction in roundoff
error in the computation of high-order derivatives. For the cases
we have tesled, we find that the accuracy obtained from the
matrix multiply approach is comparable to the accuracy ob-
tained from transform techniques.

2. NUMERICAL METHOD

We assume that there are N + 1 collocation points and that
the indices i and j run from 0 to N + | unless otherwise stated.
An explicit formula for the matrix D is (2, 4, 5]

Dy = (= 1He 5~ %),
D= — /201 — x)),
Dw (ZIVI2 + l)[,6, DNN = — Dm,

i#],

l=i=N-—1, (N
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where ¢; = I for 1 £ =N — 1, ¢ = ¢y = 2 and x; are the
Gauss—Lobatto points

x;=cos(jmlS)y (Gj=0,..,N).

If fis any function and f denotes the vector f; = f(x;) then the
matrix product D f is the Chebyshev pseudo-spectral approxi-
mation to f'(x). It is known that this matrix product can be
computed in O(N log N) operations by use of fast Fourier
transform techniques coupled to a recursion [2]. However, for
many applications the matrix multiply approach can be more
efficient, as (1) it is vectorizable, (ii) it is readily parallelizabtle,
and (iii) it can be more amenable to the implementation of
implicit time differencing schemes.
It can easily be seen that for each row of D we have

J=N
DU ={Q.
=0

(2)

This is simply a statement that the constant vector is a null
vector of D, Straightforward implementation of (1) leads to a
matrix which fails to satisfy (2). For example, in single precision
on a Cray C90 computation of D with N = 16 leads to values
for the absclute value of the lefi-hand side of (2) varying from
3 X 107" o 6 X 107" The largest errors occur near the
boundaries and the smallest errors occur in the interior. Due
to accumulation of roundoff error, the failure to satisfy (2)
becomes more pronounced for larger values of N. For example,
increasing N to 97 leads to values for the absolute value of the
left-hand side of (2) ranging from 3 X 107® near the boundaries
to 6 X 107" in the interior. We show below that this can lead
to significant errors, particularly in approximating higher deriv-
atives.

We can enforce (2) by modifying the calculation of the
diagonals. Specifically, the matrix D can be constructed by
defining the off-diagonal entries as above and then defining the
diagenal entries by

D;=- 2 Du- 3

J=0 i

We have found that the use of (3) can lead to significantly
greater accuracy in the computation of higher derivatives for
a wide range of functions. We have tested many functions, and
we present results for two such functions below, We note that
it is possible to use a similar technique to correct the maximum
entry (in absolute value) in each row of D, rather than the
diagonal entry. We have tested this and find that the results
change only slightly.

3. EXAMPLES

We consider the approximation of the following functions
defined for —1 = x = I

331
flx)} = sin(xw/2), (4)
(3)

flx)=x8

These functions are gradually varying and, for the values of N
that we consider, the approximation of these functions by a
Chebyshev interpolant is essentially exact (it is exact for (5)).
Errors in approximating the higher derivatives for (4) and (5)
can be attributed to roundoff errors due to ill-conditioning of
the matrix D. We note that (4) satisfies the boundary conditions

fFrED=M=n=0, (6)
allowing us to test the effect of including boundary conditions
in the matrix.

We consider the error in approximating (4) and (3) for various
values of N and for three techniques to implement Chebyshev
pseudo-spectral differentiation. In method 1, I is constructed
using a straightforward implementation of (1). In method 2 we
modify the calculation of the diagonals as indicated in (3). In
method 3 we employ a fast Fourier transform, together with a
recursion, so that the matrix D is not explicitly constructed.
For methods 1 and 2 the Cray routine MXV is employed to
compute the product of a matrix and a vector. Higher derivatives
are computed by successive matrix multiplications. Each prod-
uct of a matrix and a vector is thus performed with the corrected
matrix. If higher derivatives are computed by first performing
a matrix product and then computing the product of a matrix
and a vector (e.g., computing D? first, in order to compute
second derivatives), it may be necessary to correct the diagonals
of the resulting matrix product. In addition, it may be useful
to employ a similar correction to matrices obtained from matrix
inversion procedures, wihich arise in implicit time differencing
schemes. For method 3 we emploved a hand-coded fast Fourier
transform. We measure errors in the second and fourth deriva-
tives. F, is the maximum error in the second derivative, where
the maximum is taken over alt collocation points employed,
while E, is the maximum relative error for the fourth derivative.
Maximum relative errors are taken for the fourth derivatives
since the values of the fourth derivative are significantly larger
than the values of the second derivatives for the functions that
are tested here. We point out that errors in the second derivative
are crucially important for the calculation of diffusion, while
errors in the fourth derivative are important for the study of
fourth-order equations, such as the Kuramoto-Sivashinsky
equation, both of which are important in the modeling of non-
linear phenomena in a variety of physical applications. In both
cases a large number of collocation peints may be needed in
order to adequately resolve the solution.

We first consider the case where boundary conditions are
not explicitly imposed. Errors for the different methods are
presented in Tables I and 1I for (4} and (5), respectively. We
note that the specific numbers obtained depend slightly on
the particular hardware employed and on the way that the
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TABLE I

Results for Approximating Derivatives of
f(x) = sin{xn/2)

Method N E E,
1 17 3.39 X 107 1.24 % 10°¢
2 17 496 x 1071 1.32 x 1078
3 17 2.06 X 1070 427 x 107
1 49 277 x 107 955 x 107
2 49 7.92 X 10-° 2.47 x 1074
3 49 121 X 1078 227 % 1074
1 97 1.37 X 10~ 6.03 X 101
2 97 118 X 1077 6.37 X 107
3 97 3.70 % 107 1.37 X 10°
1 257 2.86 % 1072 6.13 X 10F
2 257 1.03 x 107 266 X 107
3 257 592 x 10 1.16 x 10°

summation in (3) is implemented. However, we have found
that these differences are very small compared to the differences
between the proposed method and the other two methods. The
results presented here were obtained on a Cray C90, using a
straightforward implementation of (3).

The errors in both cases can be directly attributed to roundoff
in computing the matrix elements and in performing the matrix
or transform operations, Indeed, computations for (5) should
be exact as it is a polynomial. The results demonstrate the
dramatic increase in ill-conditioning as N increases, as well as
the significant improvement in accuracy when (3) is employed
to construct the matrix. We note that the errors from the fast
Fourier transform approach are roughly comparable to those
obtained from the matrix multiply approach employing (3). It
was shown in [1, 3] that this approach is generally more accurate
than matrix multiplication techniques; however, this does not

TABLE I
Results for Approximating Derivatives of
flx) =x*
Method N E E,
1 17 3.50 x 107 7.40 x 107°
A 17 371 x 197 373 x 1
3 17 428 X 10°° 2.53 x 107"
1 49 3.14 X 1077 339 x 1078
2 49 5.87 X 107 4.09 X 10°°
3 49 733 x 107 461 x 10°®
1 97 1.37 x 1074 2.18 x 107
2 97 3.07 X 1077 3149 x 107
3 97 1.01 X 107¢ 9.36 x 107
1 257 2.86 x 1072 222 % 1F
2 257 3.90 x 1073 1.25 x 10°
3 257 231 x 107 146 X 10!
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FIG. 1. Logarithm of relative error for approximation of fourth derivative

of (4) using 97 collocation points.

show up for our implementation of the fast Fourier transform ap-
proach.

The spatial distribution for the error can be seen in Fig. 1,
where we plot the logarithm of the relative error for the fourth
derivative of (4) employing methods 1 and 2 for N = 97. We
note that while the error is largest at the boundaries, where the
diagonal terms are largest (an effect also observed in [1]), a
significant reduction in the error is realized for all values of x.
The results presented for f(x) = x® are typical. This is illustrated
in Fig. 2, where we plot the logarithm of the maximum error
for the second derivative of f(x) = x/, j = 1,..., 95, with ¥ =
97. In addition, similar results have been found for other values
of N and for other smooth functions.

Finally, we consider the effect of incorporating boundary
conditions in the matrix. We consider the approximation of (4)
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FIG. 2. Logarithm of maximum norm egfror for the computation of the
second derivative of f(x) = x/, j = 1, ..., 95, using 97 collocation points.
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TABLE III

Results for Approximating Derivatives of f{x)
= sin{xw/2) Incorporating Boundary Conditions
in the Matrix

Method N E, E,
1 17 8.42 X 19-"° 443 % 1077
2 17 1.29 x 107% 544 X 107°
3 17 513 x 10 275 x 10°%
i 49 873 X 107¢ 3.94 x 1073
2 49 191 X 107 8.97 X 1078
3 49 4,79 X 107° 2,07 X 107
1 97 2.83 X 1078 1.84 X 10
2 97 2.64 X 1078 2,01 X 102
3 97 1.69 X 1077 1.14 ¥ 1!
1 257 549 x 1073 1.74 X 10°
2 257 249 X 1078 2.51 % 10
3 257 871 X 10°® 2.99 x 107

with the boundary conditions (6) (for the error E, only the
boundary conditions on the first derivative enter). The results
are presented in Tabie IIL

The results in Table ILI demonstrate that incorporating bound-
ary conditions within the matrix, i.e., indirectly imposing the
boundary conditions, can lead to a reduction in error for the
higher derivatives employing all approaches. However, the ba-
sic ill-conditioning in progressively applying the differentiation
operators is still apparent. A significant improvement in the
computation of higher derivatives is still obtained by the use
.of (3). In all cases we note that the computation of fourth
derivatives for problems where O(100) collocation points are
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required to resolve the selution, can be inaccurate for Cheby-
chev pseudo-spectral methods as currently employed.
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